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LETTER TO THE EDITOR

Dynamics of electronic transport in metal/organic/metal
structures

Z G Yu, D L Smith, A Saxena and A R Bishop
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Received 3 November 1998

Abstract. We develop a novel self-consistent Green’s function approach to study the dynamics
of electronic transport across a metal/conjugated–oligomer/metal structure. We find a crossover
behaviour in transport from free electron to polaron-like, with increasing phonon frequency of
the oligomer. In the former, lattice motion lags behind the wavepacket of an incoming electron;
whereas, in the latter, the lattice can follow the electron. To simulate lattice fluctuations we
study a pre-existing lattice distortion and find enhanced sub-gap transmission. These results have
implications for transport experiments on polymer light-emitting diodes and molecular wires.

The study of electronic transport across organic tunnel devices, e.g. metal/conjugated–
oligomer/metal structures, has recently become important both due to their technological
applications and for a fundamental understanding of competing time scales in electron–lattice
coupled systems. Examples of such devices include polymer light-emitting diodes (PLEDs) [1]
and molecular wires sandwiched either between metals or a metal and an STM tip [2, 3, 4, 5].
Conjugated oligomers in these devices are quite different from inorganic semiconductors in that
oligomers are flexible and have strong electron–lattice interactions. Thus polaron formation
and lattice fluctuations are expected to crucially affect the transport properties in the organic
tunnelling device, which make it quite distinct from inorganic semiconductor double barrier
tunnelling structures. In the context of conjugated polymers and PLEDs, polarons are usually
assumed to be the primary charge carriers [6]. In contrast, the oligomer in a molecular wire
[7, 8, 9] is frequently treated as a rigid lattice, with the carriers assumed to be free electrons.
These assumptions with regard to the nature of carriers in these organic structures are not
obviously justified. Since the electronic and lattice motions influence each other, they must be
treated self-consistently. This is an intrinsically dynamical problem but, due to the complexity
and numerical intensity of the dynamical calculations, only static calculations have been carried
out to date [7, 8, 9, 10].

To address these basic issues we develop here a physically appealing Green’s function
dynamical formalism, which treats the electronic and lattice time evolution self-consistently,
and is applicable to a variety of device configurations. We find the following major results.
(i) The carrier transport behaviour depends on the ratio of the electronic time scale and the
lattice time scale (phonon period). Both free electron and polaron limiting behaviour can be
realized in these structures by tuning the phonon frequency of the oligomer for fixed electronic
parameters. (ii) In the low-frequency regime, the lattice responds to the incoming electron
slowly and lags behind the electron, so that the carrier is basically a free electron; whereas in the
high-frequency regime, the lattice can follow the electron motion, and the carrier is polaron-like
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(i.e., electron dressed with a lattice distortion). (iii) Lattice fluctuations are important in certain
circumstances and they can produce a transient polaron-like or soliton-like lattice distortion,
which qualitatively changes the transmission of the incoming electron.

Several recent experiments have observed the lattice effects on electronic conduction
through organic molecular wires and photoelectron transmission through organic thin films
[11, 12]. We present thefirst dynamical simulation of electronic transport inorganicsandwich
structures. Our results have wide applicability to these and related problems and to the
interpretation of experiments in molecular electronic structures with metal/organic interfaces,
such as conjugated self-assembled monolayer spacers to control electron injection, single
electron organic transistors, etc. Furthermore, our dynamical approach can be used to
determine to what extent the usual rigid lattice assumption of transport in quantum wires is
valid, and when lattice dynamics must be self-consistently employed for a proper understanding
of the transport.

We consider an oligomer chain withN atoms sandwiched between two semi-infinite metal
leads. The total Hamiltonian of this system consists of three partsH = Hmet +Holi +Hint. We
describe the metal by a one-dimensional (1D) tight-binding model

Hmet= −t0
[ −1∑
l=−∞

(c
†
l+1cl + H.c.) +

∞∑
l=N+1

(c
†
l+1cl + H.c.)

]
and the oligomer by the Su–Schrieffer–Heeger (SSH) model fortrans-polyacetylene [13]

Holi = −
N−1∑
l=1

[t − α1l ](c
†
l+1cl + H.c.) +

N−1∑
l=1

K

2
12
l +

N−1∑
l=2

p2
l

2M
.

Herec†
l (cl) is the electron creation (annihilation) operator at sitel,1l = ul+1− ul , ul (pl) the

lattice displacement (momentum) of thelth atom,α the electron–lattice coupling,M the atom
mass andK the spring constant. The positions of the atoms in the metal leads and the oligomer
atoms at site 1 andN are taken to be fixed. The interface coupling between metals and the
oligomer is through hoppingHint = −t1(c†

1c0 +c†
N+1cN + H.c.). The idealized 1D contacts and

metals enable us to efficiently capture main qualitative features, which depend weakly on the
detailed structure of contacts [10]. We study this model by explicitly taking into account all
valence electrons in the oligomer and electrons below the Fermi energy of the metal.

We determine the initial lattice configuration of the oligomer in the ground state after it
is attached to metal leads by requiringδ〈H 〉/δul = 0. The interface couplingHint causes an
energy change compared with the isolated oligomer and metals, which can be calculated by

δE =
∫ EF

−2t0

dEEδρ(E)

whereEF is the Fermi energy of the metal,δρ is the change of density of states, and we obtain

δρ(E) = − 1

π
Im

d

dE

[
ln(1− t21G̃00G̃11) + ln(1− t21G̃NNG̃N+1N+1)

]
.

Here G̃ll′(E) is the Green’s function forHoli + Hmet, which is defined byG̃ll(E) =∑
i |〈l|φi〉|2/(E − Ei + iε), whereφi is the eigenfunction of theith level in the metal or

the oligomer, depending on whetherl is in the metal or the oligomer, andEi its energy.
The detailed derivation and expressions forδρ(E) andG̃ll′(E) will be presented elsewhere.
Thusδ〈H 〉/δul contains two parts,δ〈H 〉/δul = δ〈Holi〉/δul + δE/δul. We regardHint as the
interacting part of the total Hamiltonian and the very short-range potential ofHint enables us
to treat it rigorously rather than perturbatively.
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We construct a wavepacket far from the interface at the left metal to study dynamics of
electronic transport across this sandwich device. We take the wavepacket initially to have a
Gaussian profile

ψl(τ0) = C exp

[
ik0(l − l0)− (l − l0)

2

4(δl)2

]
where k0 is the mean momentum of this wavepacket,l0 its location, andδl its width.†
DenotingH0 = Hmet +Holi , we study the evolution of the incoming electron by solving the
time-dependent Schrödinger equation for the wavepacket(ih̄∂/∂τ − H0)ψl(τ ) = Hintψl(τ ).
Because of strong electron–lattice coupling in the oligomer, the lattice and wavepacket
motions influence each other and must be determined self-consistently. We determine the
lattice configuration of the oligomer by solving the classical lattice equation of motion
Md2ul/dτ 2 = −δ〈H 〉/δul .

For a given lattice configuration at timeτ , we calculate the electronic Green’s function of
H0 usingGll′(δτ, τ ) ≡ −i〈l| exp[−iH0(τ )δτ/h̄]|l′〉. For the left metal (−∞ < l, l′ 6 0), we
obtainGll′(δτ ; τ) = −i[ i|l−l

′|J|l−l′|(γ δτ) − i |l+l′−2|J|l+l′−2|(γ δτ)] with γ ≡ 2t0/h̄, andJl(x)
thelth order Bessel function of the first kind. The expression for the right metal is similar. For
the oligomer (16 l, l′ 6 N )Gll′(δτ ; τ) = −i

∑
i〈l|φi(τ )〉〈φi(τ )|l′〉e−iEiδτ/h̄. So after a small

time intervalδτ (0.01 fs in our numerical calculations for reliable results), the wavefunction
of the wavepacket is obtained through the iteration equation

9(τ + δτ) = iG(δτ ; τ)9(τ) + S(δτ ; τ)Hint9(τ)

whereG is the Green’s function matrix andSll′(δτ, τ ) =
∫ δτ

0 dτ ′Gll′(δτ − τ ′; τ)/h̄2. Since
Hint is very localized (in real space nonzero elements ofHint form two 2×2 submatrices),
the above equation essentially contains one summation. Thus our approach is efficient for
studying the wavepacket evolution. Since both the metal and the oligomer are described by
Green’s functions, our approach can be easily extended to other metals and oligomers by using
the Green’s functions for these materials in the iteration equation.

The updated lattice configuration after time intervalδτ is obtained from

ul(τ + δτ) = ul(τ ) +
pl(τ )

M
δτ

pl(τ + δτ) = pl(τ ) + F(τ)δτ

whereF(τ) ≡ −δ〈H 〉/δul = −[δ〈Holi〉/δul + δE/δul ]. Here, however,δ〈Holi〉/δul should
include the contribution of both valence electrons and the incoming wavepacket. The
wavepacket contribution is 2α[Re(ψ∗l+1(τ )ψl(τ ))− Re(ψ∗l (τ )ψl−1(τ ))].

The transmission (T ) and reflection (R) coefficients are computed by integrating currents
over time at the left and right metals far from the interfaces. For the initial wavepacket
normalized to unit incident current density

T =
∫ ∞
τ0

dτjr(τ ) R =
∫ ∞
τ0

dτjl(τ )

where the currents arejr(τ ) = it0(ψ∗l+1ψl−ψ∗l ψl+1) (l � N)andjl(τ ) = it0(ψ∗l ψl+1−ψ∗l+1ψl)
(l � 0).

As an example, we study a sandwich structure with an 8-atom oligomer. We fix the
width of the initial wavepacket,δl = 10 lattice constants, and the Fermi energy of the metals,
EF = 0. The wavepacket width can be tuned to change the sharpness of the wavepacket energy
distribution. Other parameters aret0 = 2.6 eV, t1 = 1.5 eV, t = 2.5 eV,α = 7 eV Å−1 and

† We assume the energy of the incoming wavepacket is well aboveEF to ensure the scattered states are unoccupied.
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Figure 1. Electronic transmission as a function of the incoming wavepacket energy forα = 7
eV Å−1. The dotted (triangles), solid and dashed curves correspond toω = 0, ω = ω0 and
ω = 10ω0. Upper inset shows schematic electronic levels of the oligomer; dotted curves denote
polaron levels.

K = 40 eV Å−2, which are typical values for conjugated linear polymers. Figure 1 shows the
transmission coefficient as a function of the energy of the incoming wavepacket. With fixed
electronic structure, we tune the bare optical phonon frequencyω = 2

√
K/M by changing

the atomic massM of the oligomer to systematically study the transport. The dotted line
(triangles) is for the caseω = 0, i.e., the lattice does not move and stays in the ground state
configuration while the wavepacket tunnels through the oligomer. The transmission peaks
come from resonant tunnelling, which occurs when the energy of the wavepacket coincides
with discrete levels of the oligomer. These peaks are broad because of the finite width of
the wavepacket. The solid line describes the caseω = ω0 = 0.2268 eV, which is close to
the value intrans-polyacetylene. We see from the figure that the transmission is essentially
the same as that in the static case (ω = 0). However, if the phonon frequency is large, e.g.,
ω = 10ω0, as shown by the dashed line, the transmission is quite different from that in the
static or low-frequency cases, especially in the region below the energy gap of the oligomer.
The first resonant tunnelling peak shifts notably toward lower energy, and the transmission is
enhanced below the gap. For a smallerα = 5.6 eV Å−1, as shown in the lower inset of figure
1, we observe a very similar behaviour of transmission as we change the phonon frequency.
The only difference is that for smallerα the shift of the first peak is less pronounced.

To understand the different transmission behaviour in different phonon frequency regimes,
we examine the charge density of the wavepacket and the magnitude of the lattice distortion
from its equilibrium configuration in the oligomer for different times. Figure 2 illustrates the
case in the low-frequency regime,ω = ω0. The circles, squares and triangles correspond
to τ = 6, 8, 10 fs. Figure 2(a) shows that from 6 to 10 fs, the wavepacket is moving from
the left interface to the right one. Because of the electron–lattice coupling, the lattice moves
away from its equilibrium configuration, as shown in figure 2(b). However, during this period,
the lattice is within its first oscillation period and lags behind the wavepacket motion. The
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Figure 2. Snapshot of charge density of the wavepacket and magnitude of the lattice distortion in
the oligomer forω = ω0. The circles, squares and triangles correspond toτ = 6, 8, 10 fs. The
energy of the incoming wavepacket is 2.1 eV.

wavepacket behaves like a free electron and the transmission is close to that of the static case.
The high-frequencyω = 10ω0 results are shown in figure 3. The lattice behaviour is quite

different from that inω = ω0. During the period from 6 to 10 fs, as the wavepacket moves
from the left interface to the right one, the profile of the lattice distortion also moves through
the oligomer, following the wavepacket motion. Now the carrier is not a free electron but
the electron is surrounded by a localized lattice distortion, in a polaron-like cloud. Therefore,
in the high-frequency regime, the first transmission peak shifts toward the polaron electronic
level which lies below the energy gap, as shown in figure 1. We also find the crossover from
the free electron-like to polaron-like behaviour by tuning the electronic time scale with a fixed
physically realistic phonon frequency of the oligomer (ω = ω0). The electronic time scale
is determined by the momentum of the incoming wavepacket, ¯h/|2t0 sink| for the dispersion
Ek = E0−2t0 cosk of the metal. We have chosen different site energyE0 of the metal so that
the wavepacket can have different momenta for the same energy. Thus, whether the carrier is
like a free electron or a polaron depends on the ratio between the electron time scale and the
lattice time scale.

Although, from the above calculations, it seems that polaron effects are not extremely
important in typical polymers, strong lattice fluctuations may change this picture dramatically.
Due to the low dimensionality of polymers, lattice fluctuations can be sufficiently strong
to produce some transient soliton- or polaron-like lattice distortion. Since the polaron
configuration has the most important contribution to lattice fluctuations in oligomers, we
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Figure 3. Snapshot of charge density of the wavepacket and magnitude of the lattice distortion in
the oligomer forω = 10ω0. The symbols and the energy of wavepacket are the same as in figure 2.

assume a pre-existing polaron lattice distortion and calculate the wavepacket transmission to
study fluctuation effects. In figure 4, we show the transmission as a function of the energy
of the incoming wavepacket with a pre-existing polaron-like lattice distortion. The dashed
and dot-dashed lines correspond toω = 0 andω = ω0. For ω = 0, because the lattice
does not move, the first resonant tunnelling peak is from the polaron level in the oligomer. For
ω = ω0, although the first transmission peak shifts from the polaron level toward higher energy
compared to the case ofω = 0, it is still much lower than the energy gap (first peak of the solid
line). This indicates that the wavepacket can use a ‘partially formed’ polaron level produced by
lattice fluctuations to tunnel through the oligomer, although the carrier behaviour here is more
like a free electron. Thus polaron effects may be important even in the low-frequency regime
due to the presence of strong lattice fluctuations in oligomers. The present realization of lattice
fluctuations is more realistic compared to the previous approximation treated as static disorder
[10]. The sub-gap transmission is enhanced in both cases, although at somewhat different
energies.

In summary, because of strong electron–lattice coupling in organics, the electronic and
lattice time evolutions should be calculated self-consistently. To this end, we have developed
an efficient and physically intuitive Green’s function approach to study the dynamics of
wavepacket tunnelling through organic sandwich structures. The approach can be easily
extended to other configurations. We found a crossover behaviour in transport with increasing
phonon frequency of the oligomer. In the low-frequency regime, the lattice motion lags
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Figure 4. Electronic transmission as a function of the incoming wavepacket energy with a pre-
existing polaron-like lattice distortion. The electron–lattice coupling isα = 5.6 eV/Å. Dashed
and dot-dashed curves correspond toω = 0 andω = ω0. The solid line is for reference purposes,
obtained by using the equilibrium lattice configuration andω = ω0.

behind the wavepacket of the incoming electron and the transmission is very close to that
in the static case. The carrier in this regime is like a free electron as in inorganic sandwich
devices. In contrast, in the high-frequency regime, the lattice can follow the motion of the
injected electron and the carrier is like a polaron. Thus the first resonant tunnelling peak
in transmission shifts toward the polaron energy level of the oligomer. We calculated the
dynamical electronic transmission with a pre-existing lattice distortion to simulate lattice
fluctuations. Strong lattice fluctuations in 1D oligomers may lead to transient polaron-like
lattice distortions, which change the transmission of these tunnel structures substantially, even
in the low phonon frequency regime. Our microscopic results should provide valuable input
to macroscopic device models, e.g. cross-sections for scattering events and carrier mobilities.

This work was supported by the LDRD/MEEM program at LANL and the US Department of
Energy.

References

[1] See, e.g., Burroughes J H, Bradley D D C, Brown A R,Marks R N, Mackay K, Friend R H, Burns P L and
Holmes A B 1990Nature347539

[2] Bumm L A, Arnold J J, Cygan M T, Dunbar T D, Burgin T P, Jones L, Allara D L, Tour J M and Weiss P S 1996
Science2721323
Andres R P, Bein T, Dorogi M, Feng S, Henderson J I, Kubiak C P, Mahoney W, Osifchin R G and
Reifenberger R 1996Science2731690

[3] Datta S, Tian W, Hong S H, Reifenberger R, Henderson J I and Kubiak C P 1997Phys. Rev. Lett.792530
[4] Boulas C, Davidovits J V, Rondelez F and Vuillaume D 1996Phys. Rev. Lett.764797
[5] Yazdani A, Eigler D M and Lang N D 1996Science2721921
[6] See, e.g., Conwell E M 1997Handbook of Organic Conductive Molecules and Polymersvol 4, ed H S Nalwa

(New York: Wiley)
[7] Joachim C and Vinuesa J F 1996Europhys. Lett.33635



L14 Letter to the Editor

[8] Datta S and Tian W 1997Phys. Rev.B 55R1914
[9] Samanta M P, Tian W, Datta S, Henderson J I and Kubiak C P 1996Phys. Rev.B 53R7626

[10] Yu Z G, Smith D L, Saxena A and Bishop A R 1997Phys. Rev.B 566494
Yu Z G, Smith D L, Saxena A and Bishop A R 1998J. Phys.: Condens. Matter10617

[11] Kadyshevitch A and Naaman R 1997Surf. Interface Anal.2571
Kadyshevitch A and Naaman R 1995Phys. Rev. Lett.743443

[12] Haran A, Kadyshevitch A, Cohen H, Naaman R, Evans D, Seideman T and Nitzan A 1997Chem. Phys. Lett.
268475

[13] Heeger A J, Kivelson S, Schreiffer J R and Su W P 1988Rev. Mod. Phys.60781


